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Abstract. Deep learning is a branch of machine learning and this technique 

allows us to create classifiers. We must find the best dataset size for a classifier 

process to permit using less time and give good accuracy. In this paper we will 

propose models with different deep layers and size dimensions for detecting the 

best model to solve a task that needs quick time processing.  
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1 Introduction 

In this topic of investigation about artificial intelligence there are many techniques for 

processing and classifying the information. Each technique performs in different 

situations. Recently, there has been an interest in topics regarding artificial 

intelligence that is deep learning. Deep learning is a topic that is not new but has one 

feature that allows it to be a good technique to detect patrons in photos, audios and 

linguistics. Deep learning is a popular technique, but it still needs graphic card units 

to improve performance. GPU helps to improve processing times but it is still 

necessary to use deep learning because the GPU has many computer process units that 

work in parallel to solve the problem faster. 

There are web sites which contains several datasets concerning different subjects. 

One dataset that is famous from deep learning is the CIFAR-10 dataset. This dataset is 

found on the Kaggle web site. It is a competition where there are ten classes that 

contain one thousand images by class; the images are in red, blue and green channel 

colors. Also it has the dimensions of thirty two in width and height. In 2009 one 

research team achieved an accuracy of 92% using deep learning. Many research teams 

around the world use deep learning for processing data using GPU. The time is less 

compared with CPU and cheaper than CPU cluster. 

To apply deep learning we can use the following tips: the first aim is that dataset 

has much information, the different classes have many images that represents a split 

and the system could process the information because dataset has much data that 
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helps to identify the features of each class. If dataset does not have much data that 

represents the class information it might not be useful to apply deep learning. This 

step is the most important before selecting deep learning. The second step is to select 

the image dimensions because Kaggle competition has 32 pixels, but it is possible to 

use this dimensions for all datasets. The last step is the number of deep layers; this 

aim is important because it depends on the performance system.   

This work shows behavior in different situations. If the size dimensions are shorter 

it could reduce the processing time and hold the accuracy or increment size 

dimensions. To develop this paper we used Torch7 which is a tool for deep learning 

developed by Toronto University. This tool has a great performance when used in 

CPU and GPU. There are many papers that measure the performance between CPU 

and GPU. The result is that using GPU is better, and it is not necessary to check the 

performance with different hardware; we will only make the test on GPU. The test 

with CPU is not important because we know that the GPU is quicker in this case. Our 

classifier has four classes where three classes are different type chairs and the last 

class is the nothing class or anything that is not a chair. 

Alex Krizhevsky has several paper which show that using GPU on deep learning 

achieved better performance than using CPU. In his paper called Convolutional Deep 

Belief Networks on CIFAR-10, he mentions how to solve the CIFAR-10 model with 

convolutional neural networks and how these layers help improve the accuracy with 

dataset that contain a large number of samples, where the CIFAR-10 model has 10 

classes and each class has 1000 images for the classifier. Alex Krizhevsky proposes 

his architecture with CUDA in the paper Convolutional Neural Networks for Object 

Classification in CUDA. This contribution shows that convolutional networks benefit 

to obtain many features with different kernels to classify any object. The last 

important contribution is the development where the dataset is not only 32 pixels, it is 

for a data set with large dimensions using other types of layer and techniques such as 

dropout which helps to reduce the operations between layers. 

2 Experiment Description 

This experiment consists in creating a fork from model CIFAR-10; in our case we 

have four classes and the dataset is different. The first goal is to launch the model 

CIFAR-10 to verify that all the tools execute correctly. We found the CIFAR-10 

model for Torch7 is in its official web site. This example is just for CPU, but if we 

want to achieve a better performance it is necessary to makes the changes to execute 

on GPU. For this experiment the GPU is Nvidia GTX860M; it has 640 CUDA cores 

and 2 GBytes in memory RAM. The CUDA is the technology to execute parallel 

tasks on Nvidia GPU. Torch7 is optimized for using CUDA. Torch7 is only available 

in Ubuntu 14.04 and later versions. There are no supports to operate other systems, 

but it is possible to execute Torch7 on MacOS which only needs to have Nvidia GPU 

to achieve a good performance. 

Torch7 uses Lua language that is a C++ extension. Lua is released for parallel tasks 

such as Multicore process using OpenMP. The experiment is separated in five 
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sections that are the following: load data, model, loss function, train and test. The load 

data has to read all images when the images have 32 pixel size dimensions in width 

and height. This section exchanges our dataset with four classes. The model file 

contains the number layers of the original model; it contain three layers. The first 

layer is spatial convolution with transfer function Tanh and Maxpooling. The second 

layer also is spatial convolution with same function transfer Tanh and its respective 

Maxpooling. The last layer is classified lineal to determine which is the best result. 

The following figure shows some images for each class that represents our 

experiment. 

 

 

 

 

 

Fig. 1. Dataset for training 32 pixels in which appear two samples for each respective class. 

 

The figure above shows the four classes: the first couple shows office chair color 

blue; the next couple is normal chair color black, after office chair color black and the 

last can be anything.  Each class is represented by 180 images. The training is 

supervised and each image has a label indicating its class. 

The most important in this experiment is measuring the different times that 

finished the training. We are going to change the size dimensions. The first is to 

execute the normal dimensions that are 32 pixels, then change dimensions to 16 

pixels, after 8 pixels, and also change the size up to 64,128 and 256 pixels, 

remembering that the change in size is in width and height. Our target is to check 

which model finished first and also measure the epoch’s number that is necessary to 

obtain a good accuracy.  The epochs are the number the times it requires the training 

to obtain our value of accuracy. 

The figure below shows the images with 16 pixels by side dimensions. 

 

 

 

Fig. 2. Dataset for training 16 pixels showing two samples for each respective class. 

 

Dataset 16 pixels model for us is the same image but it lost data, and the 

information that was lost is important when the system does not train. If the 

dimensions are changed in an upper value, and the dataset has more data, could we 

get better results? In this paper we try to prove this theory. 

3 Test and Result 

We have described the experiment features, now let us try the different model with 

respect to dataset. Before changing the dataset it is important to launch our CIFAR-10 

fork model to measure the time. 
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Fig. 3. Graphic description model 32, modifications in each layer is observed. 

 

Figure 3 above shows the model behavior when processing a sample of 32 pixels. 

Inputs are 32 pixels side by side with red, green and blue channels; the image enters 

in the model and applies three layers. The first layer consists of a spatial convolution 

layer with 16 features of size three kernel. Figure 3 shows the image result, following 

the model passing into its transfer Tanh function and gives the result and last entry 

Maxpooling with size two kernel.  

The Maxpooling result now is the input for the next layer that also has spatial 

convolution, but now has 256 features with size three kernel continuing with its Tanh 

and Maxpooling result. Before entering the last layer it is necessary to reshape the 

input because at this point the input is a matrix. To classify the input it needs to be a 

vector and reshape the matrix in 256*5*5 that is equal to 6400 samples that makes a 

vector. This vector is the input for the last layer that lineal classifies the output in four 

where each output represent a class. It is necessary to apply these steps for each 

model and measure the times. 

The table below specifies the different features about different models. In models 

with 16 pixels the layers are less than with models of 32 pixels, and more layers in the 

64, 128 and 256 pixels.                       
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Table 1. Details for each model which shows their respective features. 

Layer Feature 
Model 

8 

Model 

16 

Model 

32 

Model 

64 

Model 

128 

Model 

256 

1 

Network Conv. Conv. Conv. Conv. Conv. Conv. 

Output 16 

feat. 

16 feat. 16 feat. 32 feat. 64 feat. 128 feat. 

Kernel  / 

classifier 

5x5 5x5 5x5 5x5 5x5 5x5 

Function Tanh Tanh Tanh Tanh Tanh Tanh 

Out layer Max 

pool 

2x2 

Max 

Pool 

2x2 

Max 

pool 

2x2 

Max 

pool 

2x2 

Max 

pool 

2x2 

Max 

pool 

2x2 

2 

Network reshap

e 

Conv. Conv. Conv. Conv. Conv. 

Output 16x2x

2 

256 256 512 1024 2048 

Kernel  / 

classifier 

Linear 

128 

5x5 5x5 5x5 5x5 5x5 

Function Tanh Tanh Tanh Tanh Tanh Tanh 

Out layer Linear 

4 

Max 

Pool 

2x2 

Max 

Pool 

2x2 

Max 

Pool 

2x2 

Max 

Pool 

2x2 

Max 

Pool 

2x2 

3 

Network  Reshape Reshape Conv. Conv. Conv. 

Output  256x5x5 256x5x5 256 512 1024 

Kernel  / 

classifier 

 Linear 

128 

Linear 

128 

5x5 5x5 5x5 

Function  Tanh Tanh Tanh Tanh Tanh 

Out layer  Linear 4 Linear 4 Max 

Pool 

2x2 

Max 

Pool 

2x2 

Max 

Pool 

2x2 

4 

Network    Reshape Conv. Conv. 

Output    256x4x4 256 512 

Kernel  / 

classifier 

   Linear 

128 

5x5 5x5 

Function    Tanh Tanh Tanh 

Out layer    Linear 4 Max 

Pool 

2x2 

Max 

Pool 

2x2 

5 

Network     Reshape Conv. 

Output     256x5x5 256 

Kernel  / 

classifier 

    Linear 

128 

5x5 

Function     Tanh Tanh 
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Out layer     Linear 4 Max 

Pool 

2x2 

6 

Network      Reshape 

Output      256x5x5 

Kernel  / 

classifier 

     Linear 

128 

Function      Tanh 

Out layer      Linear 4 

   

The following graphics show the behavior of each model until obtaining an 

accuracy of 100%. The 256 pixel model results are not important as 256 pixels have 

much data; it is slow compared with other models because it has had 46 minutes in 

three epochs. The result is not important because the time is longer and it is not the 

best performance. This dataset has much data but when is has much data the 

operations are bigger and require more resources and computer power. There are 

other techniques that reduce the data and operations, but this technique could be in 

another experiment. Therefore, the 256 pixels model is discarded. 

 

 
Fig. 4. Accuracy obtained in each 5 epochs. 

 

The table below shows the principal features in our experiment. The 32 pixels 

model shows our threshold in parameters such as epoch number and seconds to get 

100% accuracy. There are others features that demand on GPU. Other GPU’s with 

more CUDA cores could be more powerful. 
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Table 2. Details about behavior and performance for every model 

Feature Model 8 
Model 

16 

Model 

32 

Model 

64 

Model 

128 

Model 

256 

Epoch 117 41 30 17 23 3 

Memory 

RAM  GPU 

(MB) 

440 434 445 488 651 730 

GPU 

USES (%) 
43 34 83 91 99 99 

Time in 

Seconds 
56 30 40 165 1800 2700+ 

 

The table indicating the 32 pixels model is the best option with least number of 

epochs and time. Another important point is the low power in GPU and fast response 

time. The 16 pixels model is excellent but this model needs more epochs using less 

time and demand in GPU. This point is relevant for embedded systems that cannot use 

much energy such as mobile devices. The mobile device requires Nvidia GPU and 

there are not many devices with these GPU on the market, or systems in real time, and 

it is good idea to use this model.  

The model 8 requires many epochs and much time. Otherwise, it is not 

recommended to use very small images because there is not much information and 

might have a high error. When changing the dimensions upper to 64 pixels the data 

grows and so does the information. In the table we show that it is necessary for 17 

epochs to obtain 100% accuracy, because there is more data. However, the time is not 

good compared with model 32 in applications where the response time and accuracy 

are not important. Our last observation is that models 128 and 256 are not 

recommendable to use this dataset with these models because the data and operations 

grow. This deep layer requires more power and more time; the number of epochs is 

not less than the 64 pixels model and the required time is longer. There are other 

techniques that could help to improve the performance and try to prove what 

happened with each model and its respective dataset. 

4 Conclusions 

This paper describes behavior and features of different models applying them to 

classify four classes. The most important are the follow two points: the first is about 

the model with less dimensions such as 8 and 16 pixels; these models have low 

information compared with 32 pixel models. The 8 pixels model is not 

recommendable because it has low information and could produce many errors. The 

16 pixels model is excellent; both models are great for applications in real time 

because their response time is fast and accuracy. The second point is for the model 
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with bigger dimensions of 64, 128 and 256 pixels. The 64 pixels model for processing 

information is the best because it has much information but requires 5 minutes to 

train. If there is an application where the time is not important this model is perfect. 

The 128 and 256 models are not advisable to use. Both models have much 

information that decreases the performance but does not reduce the epoch number. 

Our future work is to approve other deep layers such as the RELU and DROPOUT 

technique that are special for models with big images. 
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