
Analysis of Performance for a Chairs Classifier

through Deep Learning

Javier Maldonado Romo, Mauricio Olguín-Carbajal, Israel Rivera-Zárate,

Raul Galvan

Instituto Politécnico Nacional, Mexico City, Mexico

javier.mr.21@gmail.com, molguinc@ipn.mx, irivera@ipn.mx, raulgalvan92@outlook.com

Abstract. Deep learning is a branch of machine learning and this technique

allows us to create classifiers. We must find the best dataset size for a classifier

process to permit using less time and give good accuracy. In this paper we will

propose models with different deep layers and size dimensions for detecting the

best model to solve a task that needs quick time processing.

Keywords: Artificial intelligence, deep learning, convolutional neural network,

classifier.

1 Introduction

In this topic of investigation about artificial intelligence there are many techniques for

processing and classifying the information. Each technique performs in different

situations. Recently, there has been an interest in topics regarding artificial

intelligence that is deep learning. Deep learning is a topic that is not new but has one

feature that allows it to be a good technique to detect patrons in photos, audios and

linguistics. Deep learning is a popular technique, but it still needs graphic card units

to improve performance. GPU helps to improve processing times but it is still

necessary to use deep learning because the GPU has many computer process units that

work in parallel to solve the problem faster.

There are web sites which contains several datasets concerning different subjects.

One dataset that is famous from deep learning is the CIFAR-10 dataset. This dataset is

found on the Kaggle web site. It is a competition where there are ten classes that

contain one thousand images by class; the images are in red, blue and green channel

colors. Also it has the dimensions of thirty two in width and height. In 2009 one

research team achieved an accuracy of 92% using deep learning. Many research teams

around the world use deep learning for processing data using GPU. The time is less

compared with CPU and cheaper than CPU cluster.

To apply deep learning we can use the following tips: the first aim is that dataset

has much information, the different classes have many images that represents a split

and the system could process the information because dataset has much data that

149

ISSN 1870-4069

Research in Computing Science 118 (2016)pp. 149–156; rec. 2016-09-27; acc. 2016-10-28

helps to identify the features of each class. If dataset does not have much data that

represents the class information it might not be useful to apply deep learning. This

step is the most important before selecting deep learning. The second step is to select

the image dimensions because Kaggle competition has 32 pixels, but it is possible to

use this dimensions for all datasets. The last step is the number of deep layers; this

aim is important because it depends on the performance system.

This work shows behavior in different situations. If the size dimensions are shorter

it could reduce the processing time and hold the accuracy or increment size

dimensions. To develop this paper we used Torch7 which is a tool for deep learning

developed by Toronto University. This tool has a great performance when used in

CPU and GPU. There are many papers that measure the performance between CPU

and GPU. The result is that using GPU is better, and it is not necessary to check the

performance with different hardware; we will only make the test on GPU. The test

with CPU is not important because we know that the GPU is quicker in this case. Our

classifier has four classes where three classes are different type chairs and the last

class is the nothing class or anything that is not a chair.

Alex Krizhevsky has several paper which show that using GPU on deep learning

achieved better performance than using CPU. In his paper called Convolutional Deep

Belief Networks on CIFAR-10, he mentions how to solve the CIFAR-10 model with

convolutional neural networks and how these layers help improve the accuracy with

dataset that contain a large number of samples, where the CIFAR-10 model has 10

classes and each class has 1000 images for the classifier. Alex Krizhevsky proposes

his architecture with CUDA in the paper Convolutional Neural Networks for Object

Classification in CUDA. This contribution shows that convolutional networks benefit

to obtain many features with different kernels to classify any object. The last

important contribution is the development where the dataset is not only 32 pixels, it is

for a data set with large dimensions using other types of layer and techniques such as

dropout which helps to reduce the operations between layers.

2 Experiment Description

This experiment consists in creating a fork from model CIFAR-10; in our case we

have four classes and the dataset is different. The first goal is to launch the model

CIFAR-10 to verify that all the tools execute correctly. We found the CIFAR-10

model for Torch7 is in its official web site. This example is just for CPU, but if we

want to achieve a better performance it is necessary to makes the changes to execute

on GPU. For this experiment the GPU is Nvidia GTX860M; it has 640 CUDA cores

and 2 GBytes in memory RAM. The CUDA is the technology to execute parallel

tasks on Nvidia GPU. Torch7 is optimized for using CUDA. Torch7 is only available

in Ubuntu 14.04 and later versions. There are no supports to operate other systems,

but it is possible to execute Torch7 on MacOS which only needs to have Nvidia GPU

to achieve a good performance.

Torch7 uses Lua language that is a C++ extension. Lua is released for parallel tasks

such as Multicore process using OpenMP. The experiment is separated in five

150

Javier Maldonado Romo, Mauricio Olguín-Carbajal, Israel Rivera-Zárate, Raul Galvan

Research in Computing Science 118 (2016) ISSN 1870-4069

sections that are the following: load data, model, loss function, train and test. The load

data has to read all images when the images have 32 pixel size dimensions in width

and height. This section exchanges our dataset with four classes. The model file

contains the number layers of the original model; it contain three layers. The first

layer is spatial convolution with transfer function Tanh and Maxpooling. The second

layer also is spatial convolution with same function transfer Tanh and its respective

Maxpooling. The last layer is classified lineal to determine which is the best result.

The following figure shows some images for each class that represents our

experiment.

Fig. 1. Dataset for training 32 pixels in which appear two samples for each respective class.

The figure above shows the four classes: the first couple shows office chair color

blue; the next couple is normal chair color black, after office chair color black and the

last can be anything. Each class is represented by 180 images. The training is

supervised and each image has a label indicating its class.

The most important in this experiment is measuring the different times that

finished the training. We are going to change the size dimensions. The first is to

execute the normal dimensions that are 32 pixels, then change dimensions to 16

pixels, after 8 pixels, and also change the size up to 64,128 and 256 pixels,

remembering that the change in size is in width and height. Our target is to check

which model finished first and also measure the epoch’s number that is necessary to

obtain a good accuracy. The epochs are the number the times it requires the training

to obtain our value of accuracy.

The figure below shows the images with 16 pixels by side dimensions.

Fig. 2. Dataset for training 16 pixels showing two samples for each respective class.

Dataset 16 pixels model for us is the same image but it lost data, and the

information that was lost is important when the system does not train. If the

dimensions are changed in an upper value, and the dataset has more data, could we

get better results? In this paper we try to prove this theory.

3 Test and Result

We have described the experiment features, now let us try the different model with

respect to dataset. Before changing the dataset it is important to launch our CIFAR-10

fork model to measure the time.

151

Analyzed Performance for a Chairs Classifier through Deep Learning

Research in Computing Science 118 (2016)ISSN 1870-4069

Fig. 3. Graphic description model 32, modifications in each layer is observed.

Figure 3 above shows the model behavior when processing a sample of 32 pixels.

Inputs are 32 pixels side by side with red, green and blue channels; the image enters

in the model and applies three layers. The first layer consists of a spatial convolution

layer with 16 features of size three kernel. Figure 3 shows the image result, following

the model passing into its transfer Tanh function and gives the result and last entry

Maxpooling with size two kernel.

The Maxpooling result now is the input for the next layer that also has spatial

convolution, but now has 256 features with size three kernel continuing with its Tanh

and Maxpooling result. Before entering the last layer it is necessary to reshape the

input because at this point the input is a matrix. To classify the input it needs to be a

vector and reshape the matrix in 256*5*5 that is equal to 6400 samples that makes a

vector. This vector is the input for the last layer that lineal classifies the output in four

where each output represent a class. It is necessary to apply these steps for each

model and measure the times.

The table below specifies the different features about different models. In models

with 16 pixels the layers are less than with models of 32 pixels, and more layers in the

64, 128 and 256 pixels.

152

Javier Maldonado Romo, Mauricio Olguín-Carbajal, Israel Rivera-Zárate, Raul Galvan

Research in Computing Science 118 (2016) ISSN 1870-4069

Table 1. Details for each model which shows their respective features.

Layer Feature
Model

8

Model

16

Model

32

Model

64

Model

128

Model

256

1

Network Conv. Conv. Conv. Conv. Conv. Conv.

Output 16

feat.

16 feat. 16 feat. 32 feat. 64 feat. 128 feat.

Kernel /

classifier

5x5 5x5 5x5 5x5 5x5 5x5

Function Tanh Tanh Tanh Tanh Tanh Tanh

Out layer Max

pool

2x2

Max

Pool

2x2

Max

pool

2x2

Max

pool

2x2

Max

pool

2x2

Max

pool

2x2

2

Network reshap

e

Conv. Conv. Conv. Conv. Conv.

Output 16x2x

2

256 256 512 1024 2048

Kernel /

classifier

Linear

128

5x5 5x5 5x5 5x5 5x5

Function Tanh Tanh Tanh Tanh Tanh Tanh

Out layer Linear

4

Max

Pool

2x2

Max

Pool

2x2

Max

Pool

2x2

Max

Pool

2x2

Max

Pool

2x2

3

Network Reshape Reshape Conv. Conv. Conv.

Output 256x5x5 256x5x5 256 512 1024

Kernel /

classifier

 Linear

128

Linear

128

5x5 5x5 5x5

Function Tanh Tanh Tanh Tanh Tanh

Out layer Linear 4 Linear 4 Max

Pool

2x2

Max

Pool

2x2

Max

Pool

2x2

4

Network Reshape Conv. Conv.

Output 256x4x4 256 512

Kernel /

classifier

 Linear

128

5x5 5x5

Function Tanh Tanh Tanh

Out layer Linear 4 Max

Pool

2x2

Max

Pool

2x2

5

Network Reshape Conv.

Output 256x5x5 256

Kernel /

classifier

 Linear

128

5x5

Function Tanh Tanh

153

Analyzed Performance for a Chairs Classifier through Deep Learning

Research in Computing Science 118 (2016)ISSN 1870-4069

Out layer Linear 4 Max

Pool

2x2

6

Network Reshape

Output 256x5x5

Kernel /

classifier

 Linear

128

Function Tanh

Out layer Linear 4

The following graphics show the behavior of each model until obtaining an

accuracy of 100%. The 256 pixel model results are not important as 256 pixels have

much data; it is slow compared with other models because it has had 46 minutes in

three epochs. The result is not important because the time is longer and it is not the

best performance. This dataset has much data but when is has much data the

operations are bigger and require more resources and computer power. There are

other techniques that reduce the data and operations, but this technique could be in

another experiment. Therefore, the 256 pixels model is discarded.

Fig. 4. Accuracy obtained in each 5 epochs.

The table below shows the principal features in our experiment. The 32 pixels

model shows our threshold in parameters such as epoch number and seconds to get

100% accuracy. There are others features that demand on GPU. Other GPU’s with

more CUDA cores could be more powerful.

154

Javier Maldonado Romo, Mauricio Olguín-Carbajal, Israel Rivera-Zárate, Raul Galvan

Research in Computing Science 118 (2016) ISSN 1870-4069

Table 2. Details about behavior and performance for every model

Feature Model 8
Model

16

Model

32

Model

64

Model

128

Model

256

Epoch 117 41 30 17 23 3

Memory

RAM GPU

(MB)

440 434 445 488 651 730

GPU

USES (%)
43 34 83 91 99 99

Time in

Seconds
56 30 40 165 1800 2700+

The table indicating the 32 pixels model is the best option with least number of

epochs and time. Another important point is the low power in GPU and fast response

time. The 16 pixels model is excellent but this model needs more epochs using less

time and demand in GPU. This point is relevant for embedded systems that cannot use

much energy such as mobile devices. The mobile device requires Nvidia GPU and

there are not many devices with these GPU on the market, or systems in real time, and

it is good idea to use this model.

The model 8 requires many epochs and much time. Otherwise, it is not

recommended to use very small images because there is not much information and

might have a high error. When changing the dimensions upper to 64 pixels the data

grows and so does the information. In the table we show that it is necessary for 17

epochs to obtain 100% accuracy, because there is more data. However, the time is not

good compared with model 32 in applications where the response time and accuracy

are not important. Our last observation is that models 128 and 256 are not

recommendable to use this dataset with these models because the data and operations

grow. This deep layer requires more power and more time; the number of epochs is

not less than the 64 pixels model and the required time is longer. There are other

techniques that could help to improve the performance and try to prove what

happened with each model and its respective dataset.

4 Conclusions

This paper describes behavior and features of different models applying them to

classify four classes. The most important are the follow two points: the first is about

the model with less dimensions such as 8 and 16 pixels; these models have low

information compared with 32 pixel models. The 8 pixels model is not

recommendable because it has low information and could produce many errors. The

16 pixels model is excellent; both models are great for applications in real time

because their response time is fast and accuracy. The second point is for the model

155

Analyzed Performance for a Chairs Classifier through Deep Learning

Research in Computing Science 118 (2016)ISSN 1870-4069

with bigger dimensions of 64, 128 and 256 pixels. The 64 pixels model for processing

information is the best because it has much information but requires 5 minutes to

train. If there is an application where the time is not important this model is perfect.

The 128 and 256 models are not advisable to use. Both models have much

information that decreases the performance but does not reduce the epoch number.

Our future work is to approve other deep layers such as the RELU and DROPOUT

technique that are special for models with big images.

References

1. Alex Krizhevsky: Convolutional Deep Belief Networks on CIFAR-10 (2009)

2. Alex Krizhevsky: Convolutional Neural Networks for Object Classification in CUDA

(2009)

3. Alex Krizhevsky, Ilya Sutskever: ImageNet Classification with Deep Convolutional

Neural Networks (2011)

4. Torch7. www.torch.ch

5. Kaggle Competitions. www.kaggle.com/competitions

6. Cifar10 Model. www.cs.toronto.edu/~kriz/cifar.html

7. Nvidia GTX860M Specification. www.geforce.com/hardware/notebook-gpus/geforce-gtx-

860m

156

Javier Maldonado Romo, Mauricio Olguín-Carbajal, Israel Rivera-Zárate, Raul Galvan

Research in Computing Science 118 (2016) ISSN 1870-4069

